3.397 \(\int \frac{x^6}{1-3 x^4+x^8} \, dx\)

Optimal. Leaf size=167 \[ \frac{\left (3+\sqrt{5}\right )^{3/4} \tan ^{-1}\left (\sqrt [4]{\frac{2}{3+\sqrt{5}}} x\right )}{2\ 2^{3/4} \sqrt{5}}-\frac{\sqrt [4]{144-64 \sqrt{5}} \tan ^{-1}\left (\sqrt [4]{\frac{1}{2} \left (3+\sqrt{5}\right )} x\right )}{4 \sqrt{5}}-\frac{\left (3+\sqrt{5}\right )^{3/4} \tanh ^{-1}\left (\sqrt [4]{\frac{2}{3+\sqrt{5}}} x\right )}{2\ 2^{3/4} \sqrt{5}}+\frac{\sqrt [4]{144-64 \sqrt{5}} \tanh ^{-1}\left (\sqrt [4]{\frac{1}{2} \left (3+\sqrt{5}\right )} x\right )}{4 \sqrt{5}} \]

[Out]

((3 + Sqrt[5])^(3/4)*ArcTan[(2/(3 + Sqrt[5]))^(1/4)*x])/(2*2^(3/4)*Sqrt[5]) - ((144 - 64*Sqrt[5])^(1/4)*ArcTan
[((3 + Sqrt[5])/2)^(1/4)*x])/(4*Sqrt[5]) - ((3 + Sqrt[5])^(3/4)*ArcTanh[(2/(3 + Sqrt[5]))^(1/4)*x])/(2*2^(3/4)
*Sqrt[5]) + ((144 - 64*Sqrt[5])^(1/4)*ArcTanh[((3 + Sqrt[5])/2)^(1/4)*x])/(4*Sqrt[5])

________________________________________________________________________________________

Rubi [A]  time = 0.0783492, antiderivative size = 167, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 4, integrand size = 16, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.25, Rules used = {1374, 298, 203, 206} \[ \frac{\left (3+\sqrt{5}\right )^{3/4} \tan ^{-1}\left (\sqrt [4]{\frac{2}{3+\sqrt{5}}} x\right )}{2\ 2^{3/4} \sqrt{5}}-\frac{\sqrt [4]{144-64 \sqrt{5}} \tan ^{-1}\left (\sqrt [4]{\frac{1}{2} \left (3+\sqrt{5}\right )} x\right )}{4 \sqrt{5}}-\frac{\left (3+\sqrt{5}\right )^{3/4} \tanh ^{-1}\left (\sqrt [4]{\frac{2}{3+\sqrt{5}}} x\right )}{2\ 2^{3/4} \sqrt{5}}+\frac{\sqrt [4]{144-64 \sqrt{5}} \tanh ^{-1}\left (\sqrt [4]{\frac{1}{2} \left (3+\sqrt{5}\right )} x\right )}{4 \sqrt{5}} \]

Antiderivative was successfully verified.

[In]

Int[x^6/(1 - 3*x^4 + x^8),x]

[Out]

((3 + Sqrt[5])^(3/4)*ArcTan[(2/(3 + Sqrt[5]))^(1/4)*x])/(2*2^(3/4)*Sqrt[5]) - ((144 - 64*Sqrt[5])^(1/4)*ArcTan
[((3 + Sqrt[5])/2)^(1/4)*x])/(4*Sqrt[5]) - ((3 + Sqrt[5])^(3/4)*ArcTanh[(2/(3 + Sqrt[5]))^(1/4)*x])/(2*2^(3/4)
*Sqrt[5]) + ((144 - 64*Sqrt[5])^(1/4)*ArcTanh[((3 + Sqrt[5])/2)^(1/4)*x])/(4*Sqrt[5])

Rule 1374

Int[((d_.)*(x_))^(m_)/((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}
, Dist[(d^n*(b/q + 1))/2, Int[(d*x)^(m - n)/(b/2 + q/2 + c*x^n), x], x] - Dist[(d^n*(b/q - 1))/2, Int[(d*x)^(m
 - n)/(b/2 - q/2 + c*x^n), x], x]] /; FreeQ[{a, b, c, d}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n,
 0] && GeQ[m, n]

Rule 298

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b),
2]]}, Dist[s/(2*b), Int[1/(r + s*x^2), x], x] - Dist[s/(2*b), Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &
&  !GtQ[a/b, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{x^6}{1-3 x^4+x^8} \, dx &=\frac{1}{10} \left (5-3 \sqrt{5}\right ) \int \frac{x^2}{-\frac{3}{2}+\frac{\sqrt{5}}{2}+x^4} \, dx+\frac{1}{10} \left (5+3 \sqrt{5}\right ) \int \frac{x^2}{-\frac{3}{2}-\frac{\sqrt{5}}{2}+x^4} \, dx\\ &=\frac{\left (3-\sqrt{5}\right ) \int \frac{1}{\sqrt{3-\sqrt{5}}-\sqrt{2} x^2} \, dx}{2 \sqrt{10}}-\frac{\left (3-\sqrt{5}\right ) \int \frac{1}{\sqrt{3-\sqrt{5}}+\sqrt{2} x^2} \, dx}{2 \sqrt{10}}-\frac{\left (3+\sqrt{5}\right ) \int \frac{1}{\sqrt{3+\sqrt{5}}-\sqrt{2} x^2} \, dx}{2 \sqrt{10}}+\frac{\left (3+\sqrt{5}\right ) \int \frac{1}{\sqrt{3+\sqrt{5}}+\sqrt{2} x^2} \, dx}{2 \sqrt{10}}\\ &=\frac{\left (3+\sqrt{5}\right )^{3/4} \tan ^{-1}\left (\sqrt [4]{\frac{2}{3+\sqrt{5}}} x\right )}{2\ 2^{3/4} \sqrt{5}}-\frac{\left (3-\sqrt{5}\right )^{3/4} \tan ^{-1}\left (\sqrt [4]{\frac{1}{2} \left (3+\sqrt{5}\right )} x\right )}{2\ 2^{3/4} \sqrt{5}}-\frac{\left (3+\sqrt{5}\right )^{3/4} \tanh ^{-1}\left (\sqrt [4]{\frac{2}{3+\sqrt{5}}} x\right )}{2\ 2^{3/4} \sqrt{5}}+\frac{\left (3-\sqrt{5}\right )^{3/4} \tanh ^{-1}\left (\sqrt [4]{\frac{1}{2} \left (3+\sqrt{5}\right )} x\right )}{2\ 2^{3/4} \sqrt{5}}\\ \end{align*}

Mathematica [A]  time = 0.150366, size = 160, normalized size = 0.96 \[ \frac{\frac{\left (\sqrt{5}-3\right ) \tan ^{-1}\left (\sqrt{\frac{2}{\sqrt{5}-1}} x\right )}{\sqrt{\sqrt{5}-1}}+\frac{\left (3+\sqrt{5}\right ) \tan ^{-1}\left (\sqrt{\frac{2}{1+\sqrt{5}}} x\right )}{\sqrt{1+\sqrt{5}}}-\frac{\left (\sqrt{5}-3\right ) \tanh ^{-1}\left (\sqrt{\frac{2}{\sqrt{5}-1}} x\right )}{\sqrt{\sqrt{5}-1}}-\frac{\left (3+\sqrt{5}\right ) \tanh ^{-1}\left (\sqrt{\frac{2}{1+\sqrt{5}}} x\right )}{\sqrt{1+\sqrt{5}}}}{2 \sqrt{10}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^6/(1 - 3*x^4 + x^8),x]

[Out]

(((-3 + Sqrt[5])*ArcTan[Sqrt[2/(-1 + Sqrt[5])]*x])/Sqrt[-1 + Sqrt[5]] + ((3 + Sqrt[5])*ArcTan[Sqrt[2/(1 + Sqrt
[5])]*x])/Sqrt[1 + Sqrt[5]] - ((-3 + Sqrt[5])*ArcTanh[Sqrt[2/(-1 + Sqrt[5])]*x])/Sqrt[-1 + Sqrt[5]] - ((3 + Sq
rt[5])*ArcTanh[Sqrt[2/(1 + Sqrt[5])]*x])/Sqrt[1 + Sqrt[5]])/(2*Sqrt[10])

________________________________________________________________________________________

Maple [A]  time = 0.024, size = 206, normalized size = 1.2 \begin{align*} -{\frac{1}{2\,\sqrt{2+2\,\sqrt{5}}}{\it Artanh} \left ( 2\,{\frac{x}{\sqrt{2+2\,\sqrt{5}}}} \right ) }-{\frac{3\,\sqrt{5}}{10\,\sqrt{2+2\,\sqrt{5}}}{\it Artanh} \left ( 2\,{\frac{x}{\sqrt{2+2\,\sqrt{5}}}} \right ) }+{\frac{1}{2\,\sqrt{-2+2\,\sqrt{5}}}\arctan \left ( 2\,{\frac{x}{\sqrt{-2+2\,\sqrt{5}}}} \right ) }-{\frac{3\,\sqrt{5}}{10\,\sqrt{-2+2\,\sqrt{5}}}\arctan \left ( 2\,{\frac{x}{\sqrt{-2+2\,\sqrt{5}}}} \right ) }-{\frac{1}{2\,\sqrt{-2+2\,\sqrt{5}}}{\it Artanh} \left ( 2\,{\frac{x}{\sqrt{-2+2\,\sqrt{5}}}} \right ) }+{\frac{3\,\sqrt{5}}{10\,\sqrt{-2+2\,\sqrt{5}}}{\it Artanh} \left ( 2\,{\frac{x}{\sqrt{-2+2\,\sqrt{5}}}} \right ) }+{\frac{1}{2\,\sqrt{2+2\,\sqrt{5}}}\arctan \left ( 2\,{\frac{x}{\sqrt{2+2\,\sqrt{5}}}} \right ) }+{\frac{3\,\sqrt{5}}{10\,\sqrt{2+2\,\sqrt{5}}}\arctan \left ( 2\,{\frac{x}{\sqrt{2+2\,\sqrt{5}}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^6/(x^8-3*x^4+1),x)

[Out]

-1/2/(2+2*5^(1/2))^(1/2)*arctanh(2*x/(2+2*5^(1/2))^(1/2))-3/10*5^(1/2)/(2+2*5^(1/2))^(1/2)*arctanh(2*x/(2+2*5^
(1/2))^(1/2))+1/2/(-2+2*5^(1/2))^(1/2)*arctan(2*x/(-2+2*5^(1/2))^(1/2))-3/10*5^(1/2)/(-2+2*5^(1/2))^(1/2)*arct
an(2*x/(-2+2*5^(1/2))^(1/2))-1/2/(-2+2*5^(1/2))^(1/2)*arctanh(2*x/(-2+2*5^(1/2))^(1/2))+3/10*5^(1/2)/(-2+2*5^(
1/2))^(1/2)*arctanh(2*x/(-2+2*5^(1/2))^(1/2))+1/2/(2+2*5^(1/2))^(1/2)*arctan(2*x/(2+2*5^(1/2))^(1/2))+3/10*5^(
1/2)/(2+2*5^(1/2))^(1/2)*arctan(2*x/(2+2*5^(1/2))^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{6}}{x^{8} - 3 \, x^{4} + 1}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^6/(x^8-3*x^4+1),x, algorithm="maxima")

[Out]

integrate(x^6/(x^8 - 3*x^4 + 1), x)

________________________________________________________________________________________

Fricas [B]  time = 1.96073, size = 844, normalized size = 5.05 \begin{align*} \frac{1}{5} \, \sqrt{5} \sqrt{\sqrt{5} + 2} \arctan \left (\frac{1}{4} \, \sqrt{2 \, x^{2} + \sqrt{5} + 1}{\left (\sqrt{5} \sqrt{2} - 3 \, \sqrt{2}\right )} \sqrt{\sqrt{5} + 2} - \frac{1}{2} \,{\left (\sqrt{5} x - 3 \, x\right )} \sqrt{\sqrt{5} + 2}\right ) + \frac{1}{5} \, \sqrt{5} \sqrt{\sqrt{5} - 2} \arctan \left (\frac{1}{4} \, \sqrt{2 \, x^{2} + \sqrt{5} - 1}{\left (\sqrt{5} \sqrt{2} + 3 \, \sqrt{2}\right )} \sqrt{\sqrt{5} - 2} - \frac{1}{2} \,{\left (\sqrt{5} x + 3 \, x\right )} \sqrt{\sqrt{5} - 2}\right ) - \frac{1}{20} \, \sqrt{5} \sqrt{\sqrt{5} + 2} \log \left (\sqrt{\sqrt{5} + 2}{\left (\sqrt{5} - 1\right )} + 2 \, x\right ) + \frac{1}{20} \, \sqrt{5} \sqrt{\sqrt{5} + 2} \log \left (-\sqrt{\sqrt{5} + 2}{\left (\sqrt{5} - 1\right )} + 2 \, x\right ) + \frac{1}{20} \, \sqrt{5} \sqrt{\sqrt{5} - 2} \log \left ({\left (\sqrt{5} + 1\right )} \sqrt{\sqrt{5} - 2} + 2 \, x\right ) - \frac{1}{20} \, \sqrt{5} \sqrt{\sqrt{5} - 2} \log \left (-{\left (\sqrt{5} + 1\right )} \sqrt{\sqrt{5} - 2} + 2 \, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^6/(x^8-3*x^4+1),x, algorithm="fricas")

[Out]

1/5*sqrt(5)*sqrt(sqrt(5) + 2)*arctan(1/4*sqrt(2*x^2 + sqrt(5) + 1)*(sqrt(5)*sqrt(2) - 3*sqrt(2))*sqrt(sqrt(5)
+ 2) - 1/2*(sqrt(5)*x - 3*x)*sqrt(sqrt(5) + 2)) + 1/5*sqrt(5)*sqrt(sqrt(5) - 2)*arctan(1/4*sqrt(2*x^2 + sqrt(5
) - 1)*(sqrt(5)*sqrt(2) + 3*sqrt(2))*sqrt(sqrt(5) - 2) - 1/2*(sqrt(5)*x + 3*x)*sqrt(sqrt(5) - 2)) - 1/20*sqrt(
5)*sqrt(sqrt(5) + 2)*log(sqrt(sqrt(5) + 2)*(sqrt(5) - 1) + 2*x) + 1/20*sqrt(5)*sqrt(sqrt(5) + 2)*log(-sqrt(sqr
t(5) + 2)*(sqrt(5) - 1) + 2*x) + 1/20*sqrt(5)*sqrt(sqrt(5) - 2)*log((sqrt(5) + 1)*sqrt(sqrt(5) - 2) + 2*x) - 1
/20*sqrt(5)*sqrt(sqrt(5) - 2)*log(-(sqrt(5) + 1)*sqrt(sqrt(5) - 2) + 2*x)

________________________________________________________________________________________

Sympy [A]  time = 0.896756, size = 53, normalized size = 0.32 \begin{align*} \operatorname{RootSum}{\left (6400 t^{4} - 320 t^{2} - 1, \left ( t \mapsto t \log{\left (- 1792000 t^{7} + 4920 t^{3} + x \right )} \right )\right )} + \operatorname{RootSum}{\left (6400 t^{4} + 320 t^{2} - 1, \left ( t \mapsto t \log{\left (- 1792000 t^{7} + 4920 t^{3} + x \right )} \right )\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**6/(x**8-3*x**4+1),x)

[Out]

RootSum(6400*_t**4 - 320*_t**2 - 1, Lambda(_t, _t*log(-1792000*_t**7 + 4920*_t**3 + x))) + RootSum(6400*_t**4
+ 320*_t**2 - 1, Lambda(_t, _t*log(-1792000*_t**7 + 4920*_t**3 + x)))

________________________________________________________________________________________

Giac [A]  time = 1.21738, size = 198, normalized size = 1.19 \begin{align*} \frac{1}{10} \, \sqrt{5 \, \sqrt{5} + 10} \arctan \left (\frac{x}{\sqrt{\frac{1}{2} \, \sqrt{5} + \frac{1}{2}}}\right ) - \frac{1}{10} \, \sqrt{5 \, \sqrt{5} - 10} \arctan \left (\frac{x}{\sqrt{\frac{1}{2} \, \sqrt{5} - \frac{1}{2}}}\right ) - \frac{1}{20} \, \sqrt{5 \, \sqrt{5} + 10} \log \left ({\left | x + \sqrt{\frac{1}{2} \, \sqrt{5} + \frac{1}{2}} \right |}\right ) + \frac{1}{20} \, \sqrt{5 \, \sqrt{5} + 10} \log \left ({\left | x - \sqrt{\frac{1}{2} \, \sqrt{5} + \frac{1}{2}} \right |}\right ) + \frac{1}{20} \, \sqrt{5 \, \sqrt{5} - 10} \log \left ({\left | x + \sqrt{\frac{1}{2} \, \sqrt{5} - \frac{1}{2}} \right |}\right ) - \frac{1}{20} \, \sqrt{5 \, \sqrt{5} - 10} \log \left ({\left | x - \sqrt{\frac{1}{2} \, \sqrt{5} - \frac{1}{2}} \right |}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^6/(x^8-3*x^4+1),x, algorithm="giac")

[Out]

1/10*sqrt(5*sqrt(5) + 10)*arctan(x/sqrt(1/2*sqrt(5) + 1/2)) - 1/10*sqrt(5*sqrt(5) - 10)*arctan(x/sqrt(1/2*sqrt
(5) - 1/2)) - 1/20*sqrt(5*sqrt(5) + 10)*log(abs(x + sqrt(1/2*sqrt(5) + 1/2))) + 1/20*sqrt(5*sqrt(5) + 10)*log(
abs(x - sqrt(1/2*sqrt(5) + 1/2))) + 1/20*sqrt(5*sqrt(5) - 10)*log(abs(x + sqrt(1/2*sqrt(5) - 1/2))) - 1/20*sqr
t(5*sqrt(5) - 10)*log(abs(x - sqrt(1/2*sqrt(5) - 1/2)))